By Topic

A programmable focal-plane MIMD image processor chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Etienne-Cummings ; Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Z. K. Kalayjian ; Donghui Cai

An 80×78 pixels vision chip for focal-plane image processing is presented. The chip employs a Multiple-Instruction-Multiple-Data (MIMD) architecture to provide five spatially processed images in parallel. The size, configuration, and coefficients of the spatial kernels are programmable. The chip's architecture allows the photoreceptor cells to be small and parked densely by performing all computations on the read-out, away from the array. The processing core uses digitally programmed current-mode analog computation. Operating at 9.6 K frames/s in 800-lux ambient light, the chip consumes 4 mW from a 2.5-V power supply. Performing 11×11 spatial convolutions, an equivalent computation (5.5 bit scale-accumulate) rate of 12.4 GOPS/mW is achieved using 22 mm2 in a 1.2-μm CMOS process. The application of the chip to line-segment orientation detection is also presented

Published in:

IEEE Journal of Solid-State Circuits  (Volume:36 ,  Issue: 1 )