Cart (Loading....) | Create Account
Close category search window
 

Design methodology of embedded DRAM with virtual-socket architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yamauchi, T. ; IC Div., Mitsubishi Electr. Corp., Hyogo, Japan ; Kinoshita, M. ; Amano, T. ; Dosaka, K.
more authors

This paper proposes the virtual-socket architecture in order to reduce the design turn-around time (TAT) of the embedded DRAM. The required memory density and the function of the embedded DRAM are system dependent. In the conventional design, the DRAM control circuitry with the DRAM memory array is handled as a hardware macro, resulting in the increase in design TAT. On the other hand, our proposed architecture provides the DRAM control circuitry as a software macro to take advantage of the automated tools based on synchronous circuit design. With array-generator technology, this architecture can achieve high quality and quick turn-around time (QTAT) of flexible embedded DRAM that is almost the same as the CMOS ASIC. We applied this virtual-socket architecture to the development of the 61-Mb synchronous DRAM core using 0.18-μm design rule and confirmed the high-speed operation, 166 MHz at CAS latency of two, and 180 MHz at that of three. The experimental results show that our proposed architecture can be applied to the development of the high-performance embedded DRAM with design QTAT

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:36 ,  Issue: 1 )

Date of Publication:

Jan 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.