By Topic

Bounds on tradeoffs between randomness and communication complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Canetti ; Dept. of Comput. Sci., Technion, Haifa, Israel ; O. Goldreich

A quantitative investigation of the power of randomness in the context of communication complexity is initiated. The authors prove general lower bounds on the length of the random input of parties computing a function f, depending on the number of bits communicated and the deterministic communication complexity of f. Four standard models for communication complexity are considered: the random input of the parties may be shared or local, and the communication may be one-way or two-way. The bounds are shown to be tight for all the models, for all values of the deterministic communication complexity, and for all possible quantities of bits exchanged. It is shown that it is possible to reduce the number of random bits required by any protocol, without increasing the number of bits exchanged (up to a limit depending on the advantage achieved by the protocol)

Published in:

Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on

Date of Conference:

22-24 Oct 1990