By Topic

Does code decay? Assessing the evidence from change management data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. G. Eick ; Lucent Technol. Bell Labs., Naperville, IL, USA ; T. L. Graves ; A. F. Karr ; J. S. Marron
more authors

A central feature of the evolution of large software systems is that change-which is necessary to add new functionality, accommodate new hardware, and repair faults-becomes increasingly difficult over time. We approach this phenomenon, which we term code decay, scientifically and statistically. We define code decay and propose a number of measurements (code decay indices) on software and on the organizations that produce it, that serve as symptoms, risk factors, and predictors of decay. Using an unusually rich data set (the fifteen-plus year change history of the millions of lines of software for a telephone switching system), we find mixed, but on the whole persuasive, statistical evidence of code decay, which is corroborated by developers of the code. Suggestive indications that perfective maintenance can retard code decay are also discussed

Published in:

IEEE Transactions on Software Engineering  (Volume:27 ,  Issue: 1 )