Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Uncertainty propagation and the matching of junctions as feature groupings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinquan Shen ; Altera European Technol. Center, High Wycombe, UK ; Palmer, P.

The interpretation of the 3D world from image sequences requires the identification and correspondences of key features in the scene. We describe a robust algorithm for matching groupings of features related to the objects in the scene. We consider the propagation of uncertainty from the feature detection stage through the grouping stage to provide a measure of uncertainty at the matching stage. We focus upon indoor scenes and match junctions, which are groupings of line segments that meet at a single point. A model of the uncertainty in junction detection is described, and the junction uncertainty under the epipolar constraint is determined. Junction correspondence is achieved through matching of each line segment associated with the junction. A match likelihood is then derived based upon the detection uncertainties and then combined with information on junction topology to create a similarity measure. A robust matching algorithm is proposed and used to match junctions between pairs of images. The presented experimental results on real images show that the matching algorithm produces sufficiently reliable results for applications such as structure from motion

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 12 )