By Topic

Bayesian 2-D deconvolution: effect of using spatially invariant ultrasound point spread functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. Lango ; Unimed, SINTEF, Trondheim, Norway ; T. Lie ; O. Husby ; J. Hokland

Observed ultrasound images are degraded representations of the true tissue reflectance. The specular reflections at boundaries between regions of different tissue types are blurred, and the diffuse scattering within homogenous regions causes speckle because of the oscillating nature of the transmitted pulse. To reduce both blur and speckle, we have developed algorithms for the restoration of simulated and real ultrasound images based on Markov random field models and Bayesian statistical methods. The algorithm is summarized here. Because the point spread function (psf) is unknown, we investigate the effects of using incorrect frequencies and sizes for the model psf during the restoration process. First, we degrade the images either with a known simulated psf or a measured psf. Then, we use different psf shapes during restoration to study the robustness of the method. We found that small variations in the parameters characterizing the psf, less than ±25% change in frequency, width, or length, still yielded satisfactory results. When altering the psf more than this, the restorations were not acceptable. The restorations were particularly sensitive to large increases in the restoring psf frequency. Thus, 2-D Bayesian restoration using a fixed psf may yield acceptable results as long as the true variant psfs have not varied too much during imaging.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:48 ,  Issue: 1 )