Cart (Loading....) | Create Account
Close category search window
 

Semantic query optimization for query plans of heterogeneous multidatabase systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chun-Nan Hsu ; Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan ; Knoblock, C.A.

New applications of information systems need to integrate a large number of heterogeneous databases over computer networks. Answering a query in these applications usually involves selecting relevant information sources and generating a query plan to combine the data automatically. As significant progress has been made in source selection and plan generation, the critical issue has been shifting to query optimization. This paper presents a semantic query optimization (SQO) approach to optimizing query plans of heterogeneous multidatabase systems. This approach provides global optimization for query plans as well as local optimization for subqueries that retrieve data from individual database sources. An important feature of our local optimization algorithm is that we prove necessary and sufficient conditions to eliminate an unnecessary join in a conjunctive query of arbitrary join topology. This feature allows our optimizer to utilize more expressive relational rules to provide a wider range of possible optimizations than previous work in SQO. The local optimization algorithm also features a new data structure called AND-OR implication graphs to facilitate the search for optimal queries. These features allow the global optimization to effectively use semantic knowledge to reduce the data transmission cost. We have implemented this approach in the PESTO (Plan Enhancement by SemanTic Optimization) query plan optimizer as a part of the SIMS information mediator. Experimental results demonstrate that PESTO can provide significant savings in query execution cost over query plan execution without optimization

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:12 ,  Issue: 6 )

Date of Publication:

Nov/Dec 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.