By Topic

Nonblocking WDM multicast switching networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuanyuan Yang ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Stony Brook, NY, USA ; Jianchao Wang ; Chunming Qiao

With ever increasing demands on bandwidth from emerging bandwidth-intensive applications, such as video conferencing, E-commerce, and video-on-demand services, there has been an acute need for very high bandwidth transport network facilities. Optical networks are a promising candidate for this type of applications. At the same time, many bandwidth-intensive applications require multicast services for efficiency purposes. Multicast has been extensively studied in the parallel processing and electronic networking community and has started to receive attention in the optical network community recently. In particular, as WDM (wavelength division multiplexing) networks emerge, supporting WDM multicast becomes increasingly attractive. In this paper, we consider efficient designs of multicast-capable WDM switching networks, which are significantly different and, hence, require nontrivial extensions from their electronic counterparts. We first discuss various multicast models in WDM networks and analyze the nonblocking multicast capacity and network cost under these models. We then propose two methods to construct nonblocking multistage WDM networks to reduce the network cost

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:11 ,  Issue: 12 )