By Topic

Lumpable hidden Markov models-model reduction and reduced complexity filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
White, L.B. ; Dept. of Electr. & Electron. Eng., Adelaide Univ., SA, Australia ; Mahony, R. ; Brushe, G.D.

This paper is concerned with filtering of hidden Markov processes (HMP) which possess (or approximately possess) the property of lumpability. This property is a generalization of the property of lumpability of a Markov chain which has been previously addressed by others. In essence, the property of lumpability means that there is a partition of the (atomic) states of the Markov chain into aggregated sets which act in a similar manner as far as the state dynamics and observation statistics are concerned. We prove necessary and sufficient conditions on the HMP for exact lumpability to hold. For a particular class of hidden Markov models (HMM), namely finite output alphabet models, conditions for lumpability of all HMP representable by a specified HMM are given. The corresponding optimal filter algorithms for the aggregated states are then derived. The paper also describes an approach to efficient suboptimal filtering for HMP which are approximately lumpable. By this we mean that the HMM generating the process may be approximated by a lumpable HMM. This approach involves directly finding a lumped HMM which approximates the original HMM well, in a matrix norm sense. An alternative approach for model reduction based on approximating a given HMM by an exactly lumpable HMM is also derived. This method is based on the alternating convex projections algorithm. Some simulation examples are presented which illustrate the performance of the suboptimal filtering algorithms

Published in:

Automatic Control, IEEE Transactions on  (Volume:45 ,  Issue: 12 )