By Topic

Exploring an unknown graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deng, X. ; Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA ; Papadimitriou, Christos H.

It is desired to explore all edges of an unknown directed, strongly connected graph. At each point one has a map of all nodes and edges visited, one can recognize these nodes and edges upon seeing them again, and it is known how many unexplored edges emanate from each node visited. The goal is to minimize the ratio of the total number of edges traversed to the optimum number of traversals had the graph been known. For Eulerian graphs this ratio cannot be better than 2, and 2 is achievable by a simple algorithm. In contrast, the ratio is unbounded when the deficiency of the graph (the number of edges that have to be added to make it Eulerian) is unbounded. The main result is an algorithm that achieves a bounded ratio when the deficiency is bounded; unfortunately the ratio is exponential in the deficiency. It is also shown that, when partial information about the graph is available, minimizing the worst-case ratio is PSPACE-complete

Published in:

Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on

Date of Conference:

22-24 Oct 1990