By Topic

Efficiently inverting bijections given by straight line programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Let K be any field, and let F: Kn Kn be a bijection with the property that both F and F-1 are computable using only arithmetic operations from K. Motivated by cryptographic considerations, the authors concern themselves with the relationship between the arithmetic complexity of F and the arithmetic complexity of F-1. They give strong relations between the complexity of F and F-1 when F is an automorphism in the sense of algebraic geometry (i.e. a formal bijection defined by n polynomials in n variables with a formal inverse of the same form). These constitute all such bijections in the case in which K is infinite. The authors show that at polynomially bounded degree, if an automorphism F has a polynomial-size arithmetic circuit, then F-1 has a polynomial-size arithmetic circuit. Furthermore, this result is uniform in the sense that there is an efficient algorithm for finding such a circuit for F-1, given such a circuit for F. This algorithm can also be used to check whether a circuit defines an automorphism F. If K is the Boolean field GF(2), then a circuit defining a bijection does not necessarily define an automorphism. However, it is shown in this case that, given any K nKn bijection, there always exists an automorphism defining that bijection. This is not generally true for an arbitrary finite field

Published in:

Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on

Date of Conference:

22-24 Oct 1990