Cart (Loading....) | Create Account
Close category search window

Improved optimization of time-frequency-based signal classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Davy, Manuel ; Inst. de Recherche en Commun. et Cybern. de Nantes, France ; Doncarli, C. ; Boudreaux-Bartels, G.F.

Time-frequency representations (TFRs) are efficient tools for nonstationary signal classification. However, the choice of the TFR and of the distance measure employed is critical when no prior information other than a learning set of limited size is available. In this letter, we propose to jointly optimize the TFR and distance measure by minimizing the (estimated) probability of classification error. The resulting optimized classification method is applied to multicomponent chirp signals and real speech records (speaker recognition). Extensive simulations show the substantial improvement of classification performance obtained with our optimization method.

Published in:

Signal Processing Letters, IEEE  (Volume:8 ,  Issue: 2 )

Date of Publication:

Feb. 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.