By Topic

Side-looking ADCP and Doppler radar measurements across a coastal front

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Trump, C.L. ; Naval Res. Lab., Washington, DC, USA ; Allan, N. ; Marmorino, G.O.

Measurements are reported from two side-looking Doppler systems, which were used to study the discharge front located off the mouth of Chesapeake Bay. One system was a commercial 300-kHz narrow-band acoustic Doppler current profiler (ADCP), which was mounted at a depth of 0.6 m on the port side of a research ship. The other was a prototype X-band, vertically polarized, Doppler radar mounted at a height of about 4 m on the starboard side. Both velocity and backscatter intensity were measured along two beams to ranges of 120 m (ADCP) and 200 m (radar), so that by sailing alternately on each side of the front it was possible to make nearly simultaneous across-front measurements with both systems. Despite the differences in acoustic and radar scattering mechanisms, a combined backscatter intensity surface map could be made showing a continuous frontal signature about 10-m wide and 20 dB above background levels. Each system was also able to measure the same large-scale velocity change across the front, which was dominated by the discharging buoyant bay water flowing at about 50 cm/s relative to the ambient continental shelf water. However, within a 60-m wide zone, the radar system measured velocities up to 75 cm/s larger than the ADCP. Such large velocity differences arose from the radar's sensitivity to motions associated with waves reflecting from the region of strongest across-front current convergence. This frontal convergence was resolved only by the ADCP, which showed a horizontal current change of about 25 cm/s over 10 m and appeared to extend over the upper 2 m or so of the water column. These results show that the combined information from the acoustic and radar systems provide a more complete picture of the frontal currents and wave-current interactions than either system could provide alone.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:25 ,  Issue: 4 )