By Topic

Design, implementation, and evaluation of an under-actuated miniature biped climbing robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Minor, M. ; Dept. of Mech., Michigan State Univ., East Lansing, MI, USA ; Dulimarta, H. ; Danghi, G. ; Mukherjee, R.
more authors

The design, implementation, and evaluation of a miniature biped robot for urban reconnaissance are presented. Design specifications for mobility, space requirement weight, sensing, and control are defined. A revolute hip joint is selected based on its enhanced mobility and capability to function in reasonably confined spaces. Small size dictates minimal weight, which is achieved by an under actuated joint structure, providing steering at only one foot, minimizing sensors, and structural optimization. The smart robotic foot supports the robot on a variety of smooth surfaces and provides feedback when a firm grip is established. Adaptable control strategies and dithering are implemented in lieu of minimal sensors and uncertainty created by backlash, gravity, and compliance in the suction feet. The robot is evaluated while performing tasks on surfaces with a variety of inclinations

Published in:

Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on  (Volume:3 )

Date of Conference:

2000