By Topic

A two level fuzzy PRM for manipulation planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. L. Nielsen ; Maersk Inst., Univ. of Southern Denmark, Odense, Denmark ; L. E. Kavraki

This paper presents an algorithm which extends the probabilistic roadmap (PRM) framework to handle manipulation planning. This is done by using a two level approach, a PRM of PRMs. The first level builds a manipulation graph, whose nodes represent stable placements of the manipulated objects while the edges represent transfer and transit actions. The actual motion planning for the transfer and transit paths is done by PRM planners at the second level. The approach is made possible by the introduction of a new kind of roadmap, called the fuzzy roadmap. The fuzzy roadmap contains edges which are not verified by a local planner during construction. Instead, each edge is assigned a number which represents the probability that it is feasible. Later, if the edge is part of a solution path, the edge is checked for collisions. The overall effect is that our roadmaps evolve iteratively until they contain a solution. The use of fuzzy roadmaps in both levels of our manipulation planner offers many advantages. At the first level, a fuzzy roadmap represents the manipulation graph and addresses the problem of having probabilistically complete planners at the second level. At the second level, fuzzy roadmaps drastically reduce the number of collision checks. The paper contains experimental results demonstrating the feasibility and efficiency of our scheme.

Published in:

Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on  (Volume:3 )

Date of Conference:

Oct. 31 2000-Nov. 5 2000