By Topic

A dependence graph-based approach to the design of algorithm-based fault tolerant systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vinnakota, B. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Jha, N.K.

A two-stage approach to the design of algorithm-based fault-tolerant (ABFT) systems is proposed. In the first stage a code is chosen to encode the data used in the algorithm. In the second stage the optimal architecture for implementing the scheme is chosen through the use of dependence graphs. Dependence graphs are a graph-theoretic form of algorithm representation. It is demonstrated that not all architectures are ideal for the implementation of a particular ABFT scheme. The authors propose new measures for characterizing the fault-tolerance capability of a system in order to better exploit the proposed design method. Dependence graphs can also be used for the synthesis of ABFT schemes for nonlinear problems. An example of a fault-tolerant median filter is provided to illustrate the usefulness of the dependence graph as a design tool for nonlinear system synthesis.<>

Published in:

Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International Symposium

Date of Conference:

26-28 June 1990