By Topic

Slow memory: weakening consistency to enhance concurrency in distributed shared memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. W. Hutto ; Sch. of Inf. & Comput. Sci., Georgia Inst. of Technol., Atlanta, GA, USA ; M. Ahamad

The use of weakly consistent memories in distributed shared memory systems to combat unacceptable network delay and to allow such systems to scale is proposed. Proposed memory correctness conditions are surveyed, and how they are related by a weakness hierarchy is demonstrated. Multiversion and messaging interpretations of memory are introduced as means of systematically exploring the space of possible memories. Slow memory is presented as a memory that allows the effects of writes to propagate slowly through the system, eliminating the need for costly consistency maintenance protocols that limit concurrency. Slow memory processes a valuable locality property and supports a reduction from traditional atomic memory. Thus slow memory is as expressive as atomic memory. This expressiveness is demonstrated by two exclusion algorithms and a solution to M.J. Fischer and A. Michael's (1982) dictionary problem on slow memory

Published in:

Distributed Computing Systems, 1990. Proceedings., 10th International Conference on

Date of Conference:

28 May-1 Jun 1990