By Topic

Charge-control modeling of power bipolar junction transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vijayalakshmi, R. ; Intel Corp., Hillsboro, OR, USA ; Trivdei, M. ; Shenai, K.

This paper describes an improved lumped circuit model of power bipolar junction transistors (BJTs) that can predict the turn-off fall time to a greater accuracy than currently available models. Though the existing models simulate the storage time and delay time to a good accuracy, the fall time performance is neglected. This is because the existing models do not account for the charge decay due to recombination. The model presented in this paper is based on the charge dynamics of the device. The charge dynamics are explained in detail using simulation results from an advanced two-dimensional (2-D) device and circuit simulator. Based on a physical understanding of the charge dynamics, this model is implemented to incorporate the charge decay due to recombination to account for the current tail during turn-off. The lumped-circuit model is implemented in PSPICE using the existing quasisaturation model along with controlled sources. To validate the model, the device was subjected to hard- as well as soft-switching renditions (zero current switching and zero voltage switching). The modeled results are observed to have a good match with measured results

Published in:

Power Electronics, IEEE Transactions on  (Volume:15 ,  Issue: 6 )