Cart (Loading....) | Create Account
Close category search window
 

Mode shaping of a graded-reflectivity-mirror unstable resonator with an intra-cavity phase element

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Makki, S. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Leger, J.

A graded-reflectivity-mirror (GRM) unstable resonator with low output coupling is described, where a custom-made optical phase element is used inside the resonator to provide maximally flat output. The phase element removes the dip in the output beam by pre-compensating the internal Gaussian mode. An experiment is performed with a flashlamp-pumped Nd:YAG laser. The resonator's magnification (M) and the GRM's central reflectivity (R0) are 2.3 and 0.7, respectively. The large dip in the center of the output is removed using the custom-made phase element. This resonator has the advantage over a conventional GRM unstable resonator of being suitable for lower-gain laser media. The gain required to overcome fundamental mode cavity losses for maximally flat output is decreased from 22.3 (for a conventional GRM resonator) to 4.3 (for the resonator containing the phase element). This reduction in required gain comes with essentially no loss to the resonator modal discrimination

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 1 )

Date of Publication:

Jan 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.