By Topic

Photon counting in the 1540-nm wavelength region with a germanium avalanche photodiode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Unexpected results have been obtained in measurements of dark-count rate and quantum efficiency (QE) for a germanium avalanche photodiode operating in the photon counting regime at 1540-nm wavelength. A liquid-nitrogen cooled Ge single-photon avalanche diode (SPAD) exhibited both a low dark-count rate and a QE of the order of 1%, which is at least one order of magnitude higher than the values reported for such a device. The data offer hope for future diodes that might match such performance. Reasons for the device's extraordinarily good performance, a performance level not matched by the other 17 APDs in the collection investigated, are not understood. Such high quantum efficiency germanium devices could be used in one-bit-per-photon communication systems operating in the 1540-nm telecommunications window

Published in:

IEEE Journal of Quantum Electronics  (Volume:37 ,  Issue: 1 )