By Topic

Coarse quantization for data compression in coherent location systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. L. Fowler ; Dept. of Electr. Eng., State Univ. of New York, Binghamton, NY, USA

When emitter location systems measure time-difference-of-arrival (TDOA) and differential Doppler (DD) by coherently cross-correlating the signal pairs, data compression techniques are needed to facilitate data transfer of one of the signals to the receiving site of the other signal. Two block-adaptive quantization schemes are analyzed here to determine their impact on the signal-to-noise ratio (SNR) of the quantized signal as well as on the post-correlation SNR. Comparisons are made between two approaches: quantization of the real/imaginary (R/I) components or the magnitude/phase (M/P) components. For the M/P approach, a rule is derived for optimally allocating the bits between the magnitude and phase. The M/P approach provides better post-quantization/precorrelation SNR for most signals; however, when the SNR of the signal not being quantized is small, the post-correlation SNR can be largely unaffected by the quantization. In that case, there is little difference between R/I and M/P, even under the most favorable scenario for M/P.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:36 ,  Issue: 4 )