Cart (Loading....) | Create Account
Close category search window

A Hopfield neural-network-based dynamic channel allocation with handoff channel reservation control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lazaro, O. ; Commun. Div., Strathclyde Univ., Glasgow, UK ; Girma, D.

As channel allocation schemes become more complex and computationally demanding in cellular radio networks, alternative computational models that provide the means for faster processing time are becoming the topic of research interest. These computational models include knowledge-based algorithms, neural networks, and stochastic search techniques. This paper is concerned with the application of a Hopfield (1982) neural network (HNN) to dynamic channel allocation (DCA) and extends previous work that reports the performance of HNN in terms of new call blocking probability. We further model and examine the effect on performance of traffic mobility and the consequent intercell call handoff, which, under increasing load, can force call terminations with an adverse impact on the quality of service (QoS). To maintain the overall QoS, it is important that forced call terminations be kept to a minimum. For an HNN-based DCA, we have therefore modified the underlying model by formulating a new energy function to account for the overall channel allocation optimization, not only for new calls but also for handoff channel allocation resulting from traffic mobility. That is, both new call blocking and handoff call blocking probabilities are applied as a joint performance estimator. We refer to the enhanced model as HNN-DCA++. We have also considered a variation of the original technique based on a simple handoff priority scheme, here referred to as HNN-DCA+. The two neural DCA schemes together with the original model are evaluated under traffic mobility and their performance compared in terms of new-call blocking and handoff-call dropping probabilities. Results show that the HNN-DCA++ model performs favorably due to its embedded control for assisting handoff channel allocation

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:49 ,  Issue: 5 )

Date of Publication:

Sep 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.