By Topic

Image classification for content-based indexing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vailaya, A. ; Agilent Technol., Palo Alto, CA, USA ; Figueiredo, M.A.T. ; Jain, A.K. ; Hong-Jiang Zhang

Grouping images into (semantically) meaningful categories using low-level visual features is a challenging and important problem in content-based image retrieval. Using binary Bayesian classifiers, we attempt to capture high-level concepts from low-level image features under the constraint that the test image does belong to one of the classes. Specifically, we consider the hierarchical classification of vacation images; at the highest level, images are classified as indoor or outdoor; outdoor images are further classified as city or landscape; finally, a subset of landscape images is classified into sunset, forest, and mountain classes. We demonstrate that a small vector quantizer (whose optimal size is selected using a modified MDL criterion) can be used to model the class-conditional densities of the features, required by the Bayesian methodology. The classifiers have been designed and evaluated on a database of 6931 vacation photographs. Our system achieved a classification accuracy of 90.5% for indoor/outdoor, 95.3% for city/landscape, 96.6% for sunset/forest and mountain, and 96% for forest/mountain classification problems. We further develop a learning method to incrementally train the classifiers as additional data become available. We also show preliminary results for feature reduction using clustering techniques. Our goal is to combine multiple two-class classifiers into a single hierarchical classifier

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 1 )