By Topic

Combinatorial feature selection problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Charikar, M. ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; Guruswami, V. ; Kumar, R. ; Rajagopalan, S.
more authors

Motivated by frequently recurring themes in information retrieval and related disciplines, we define a genre of problems called combinatorial feature selection problems. Given a set S of multidimensional objects, the goal is to select a subset K of relevant dimensions (or features) such that some desired property Π holds for the set S restricted to K. Depending on Π, the goal could be to either maximize or minimize the size of the subset K. Several well-studied feature selection problems can be cast in this form. We study the problems in this class derived from several natural and interesting properties Π, including variants of the classical p-center problem as well as problems akin to determining the VC-dimension of a set system. Our main contribution is a theoretical framework for studying combinatorial feature selection, providing (in most cases essentially tight) approximation algorithms and hardness results for several instances of these problems

Published in:

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on

Date of Conference:

2000