Cart (Loading....) | Create Account
Close category search window
 

Cache-oblivious B-trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bender, M.A. ; Dept. of Comput. Sci., State Univ. of New York, Stony Brook, NY, USA ; Demaine, E.D. ; Farach-Colton, M.

We present dynamic search-tree data structures that perform well in the setting of a hierarchical memory (including various levels of cache, disk, etc.), but do not depend on the number of memory levels, the block sizes and number of blocks at each level, or the relative speeds of memory access. In particular between any pair of levels in the memory hierarchy, where transfers between the levels are done in blocks of size B, our data structures match the optimal search bound of Θ(logB N) memory transfers. This bound is also achieved by the classic B-tree data structure, but only when the block size B is known, which in practice requires careful tuning on each machine platform. One of our data structures supports insertions and deletions in Θ(logB N) amortized memory transfers, which matches the B-tree's worst-case bounds. We augment this structure to support scans optimally in Θ(N/B) memory transfers. In this second data structure insertions and deletions require Θ(logB N+log 2N/B) amortized memory transfers. Thus, we match the performance of the B-tree for B=Ω(log N log log N)

Published in:

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on

Date of Conference:

2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.