By Topic

Polynomial time approximation schemes for geometric k-clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ostrovsky, R. ; Telcordia Technol., Morristown, NJ, USA ; Rabani, Y.

We deal with the problem of clustering data points. Given n points in a larger set (for example, Rd) endowed with a distance function (for example, L2 distance), we would like to partition the data set into k disjoint clusters, each with a “cluster center”, so as to minimize the sum over all data points of the distance between the point and the center of the cluster containing the point. The problem is provably NP-hard in some high dimensional geometric settings, even for k=2. We give polynomial time approximation schemes for this problem in several settings, including the binary cube (0, 1)d with Hamming distance, and Rd either with L1 distance, or with L2 distance, or with the square of L2 distance. In all these settings, the best previous results were constant factor approximation guarantees. We note that our problem is similar in flavor to the k-median problem (and the related facility location problem), which has been considered in graph-theoretic and fixed dimensional geometric settings, where it becomes hard when k is part of the input. In contrast, we study the problem when k is fixed, but the dimension is part of the input. Our algorithms are based on a dimension reduction construction for the Hamming cube, which may be of independent interest

Published in:

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on

Date of Conference: