By Topic

Testing of clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alon, N. ; Dept. of Math., Tel Aviv Univ., Israel ; Dar, S. ; Parnas, M. ; Ron, D.

A set X of points in ℜd is (k,b)-clusterable if X can be partitioned into k subsets (clusters) so that the diameter (alternatively, the radius) of each cluster is at most b. We present algorithms that by sampling from a set X, distinguish between the case that X is (k,b)-clusterable and the case that X is ε-far from being (k,b')-clusterable for any given 0<ε⩽1 and for b'⩾b. In ε-far from being (k,b')-clusterable we mean that more than ε.|X| points should be removed from X so that it becomes (k,b')-clusterable. We give algorithms for a variety of cost measures that use a sample of size independent of |X|, and polynomial in k and 1/ε. Our algorithms can also be used to find approximately good clusterings. Namely, these are clusterings of all but an ε-fraction of the points in X that have optimal (or close to optimal) cost. The benefit of our algorithms is that they construct an implicit representation of such clusterings in time independent of |X|. That is, without actually having to partition all points in X, the implicit representation can be used to answer queries concerning the cluster any given point belongs to

Published in:

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on

Date of Conference:

2000