By Topic

Fairness measures for resource allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, A. ; Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA ; Kleinberg, J.

In many optimization problems, one seeks to allocate a limited set of resources to a set of individuals with demands. Thus, such allocations can naturally be viewed as vectors, with one coordinate representing each individual. Motivated by work in network routing and bandwidth assignment, we consider the problem of producing solutions that simultaneously approximate all feasible allocations in a coordinate-wise sense. This is a very strong type of “global” approximation guarantee, and we explore its consequences in a range of discrete optimization problems, including facility location, scheduling, and bandwidth assignment in networks. A fundamental issue-one not encountered in the traditional design of approximation algorithms-is that good approximations in this global sense need not exist for every problem instance; there is no a priori reason why there should be an allocation that simultaneously approximates all others. As a result, the existential questions concerning such good allocations lead to a new perspective on a number of basic problems in resource allocation, and on the structure of their feasible solutions

Published in:

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on

Date of Conference: