Cart (Loading....) | Create Account
Close category search window
 

Extracting randomness via repeated condensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reingold, O. ; AT&T Labs.-Res., Florham Park, NJ, USA ; Shaltiel, R. ; Wigderson, A.

On an input probability distribution with some (min-)entropy an extractor outputs a distribution with a (near) maximum entropy rate (namely the uniform distribution). A natural weakening of this concept is a condenser, whose output distribution has a higher entropy rate than the input distribution (without losing much of the initial entropy). We construct efficient explicit condensers. The condenser constructions combine (variants or more efficient versions of) ideas from several works, including the block extraction scheme of Nisan and Zuckerman (1996), the observation made by Srinivasan and Zuckerman (1994) and Nisan and Ta-Schma (1999) that a failure of the block extraction scheme is also useful, the recursive “win-win” case analysis of Impagliazzo et al. (1999, 2000), and the error correction of random sources used by Trevisan (1999). As a natural byproduct, (via repeated iterating of condensers), we obtain new extractor constructions. The new extractors give significant qualitative improvements over previous ones for sources of arbitrary min-entropy; they are nearly optimal simultaneously in the main two parameters-seed length and output length. Specifically, our extractors can make any of these two parameters optimal (up to a constant factor), only at a poly-logarithmic loss in the other. Previous constructions require polynomial loss in both cases for general sources. We also give a simple reduction converting “standard” extractors (which are good for an average seed) to “strong ” ones (which are good for mast seeds), with essentially the same parameters

Published in:

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on

Date of Conference:

2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.