By Topic

Ozone production using pulsed dielectric barrier discharge in oxygen

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Samaranayake, W.J.M. ; Dept. of Electr. & Comput. Eng., Kumamoto Univ., Japan ; Miyahara, Y. ; Namihira, T. ; Katsuki, S.
more authors

The production of ozone was investigated using a dielectric barrier discharge in oxygen, and employing short-duration pulsed power. The dependence of the ozone concentration (parts per million, ppm) and ozone production yield (g(O3)/kWh) on the peak pulsed voltage (17.5 to 57.9 kV) and the pulse repetition rate (25 to 400 pulses/s, pps) were investigated. In the present study, the following parameters were kept constant: a pressure of 1.01×105 Pa, a temperature of 26±4°C a gas flow rate of 3.0 1/min and a gaseous gap length of 11 mm. A concentric coaxial cylindrical reactor was used. A spiral copper wire (1 mm in diameter) was wound on a polyvinylchloride (PVC) cylindrical configuration (26 mm in diameter) and placed centrally in a concentric coaxial electrode system with 4 mm thick PVC dielectric layer adjacent to a copper outer electrode of 58 mm in internal diameter. HV and current pulses were provided by a magnetic pulse compressor power source

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:7 ,  Issue: 6 )