By Topic

Cavity element for resonant micro optical gyroscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Significant strides have been made towards a feasible resonant micro optic gyro (RMOG). Uniquely crucial components have been developed. Experimental measurements, when coupled with theoretical analysis predicts that 1 degree/hour performance can be achieved. Three critical elements required for the successful development have been demonstrated. A high quality trench waveguide has been designed, fabricated and demonstrated to have losses as little as 0.1 dB/cm. The waveguide has been demonstrated to have gain in the 4.0 dB/cm range. Finally, a waveguide laser has been fabricated and has shown nearly enough power to adequately drive an RMOG. Analysis of the measured performance predicts that a 1 degree/hour RMOG can be constructed. The small size and projected ruggedness of the RMOG will be advantageous in high G applications. Other applications, such as man portable guidance systems, where weight and size are critical, may also benefit from RMOG technology

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:15 ,  Issue: 12 )