By Topic

Linear interference cancellation in CDMA based on iterative techniques for linear equation systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tan, P.H. ; Telecommun. Theory Group, Chalmers Univ. of Technol., Goteborg, Sweden ; Rasmussen, L.K.

It has previously been shown that well known iterations for solving a set of linear equations correspond to linear interference cancellation structures. Here, we suggest applying a block-wise iteration that consists of an outer and an inner iteration. The outer iteration used is the Gauss-Seidel (GS) method, while for the inner iteration, we study direct matrix inversion, the Jacobi over-relaxation iteration, and the conjugate gradient iteration. When a true inner iteration is used, this approach allows for a timely derivation of the acceleration parameters required by advanced iterations. The block iteration is based on a symbol-level implementation which leads to the same detection delay profile for both parallel and serial structures at the expense of differences in the amount of serial processing required. This is discussed in some detail and quantified for comparison. The performance of the detectors is studied via computer simulations where it is found that the block approach can provide significantly faster convergence, leading to improved detection delay over the simpler GS iteration. The improvements are obtained at the expense of an increase in the required serial processing speed

Published in:

Communications, IEEE Transactions on  (Volume:48 ,  Issue: 12 )