By Topic

Majority-logic-like vector symbol decoding with alternative symbol value lists

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Metzner, J.J. ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA

Majority-logic-like decoding is an outer concatenated code decoding technique using the structure of a binary majority logic code. It is shown that it is easy to adapt such a technique to handle the case where the decoder is given an ordered list of two or more prospective candidates for each inner code symbol. Large reductions in failure probability can be achieved. Simulation results are shown for both block and convolutional codes. Punctured convolutional codes allow a convenient flexibility of rate while retaining high decoding power. For example, a (856, 500) terminated convolutional code with an average of 180 random first-choice symbol errors can correct all the errors in a simple manner about 97% of the time, with the aid of second-choice values. A (856, 500) maximum-distance block code could correct only up to 178 errors based on guaranteed correction capability and would be extremely complex

Published in:

Communications, IEEE Transactions on  (Volume:48 ,  Issue: 12 )