By Topic

A GA-based method for constructing fuzzy systems directly from numerical data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-Chang Wong ; Dept. of Electr. Eng., Tamkang Univ., Tamsui, Taiwan ; Chia-Chong Chen

A method based on the concepts of genetic algorithm (GA) and recursive least-squares method is proposed to construct a fuzzy system directly from some gathered input-output data of the discussed problem. The proposed method can find an appropriate fuzzy system with a low number of rules to approach an identified system under the condition that the constructed fuzzy system must satisfy a predetermined acceptable performance. In this method, each individual in the population is constructed to determine the number of fuzzy rules and the premise part of the fuzzy system, and the recursive least-squares method is used to determine the consequent part of the constructed fuzzy system described by this individual. Finally, three identification problems of nonlinear systems are utilized to illustrate the effectiveness of the proposed method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:30 ,  Issue: 6 )