By Topic

Intelligent control of the hierarchical agglomerative clustering process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yager, R.R. ; Machine Intelligence Inst., Iona Coll., New Rochelle, NY, USA

The basic process of Hierarchical Agglomerative (HAG) clustering is described as a merging of clusters based on their proximity. The importance of the selected cluster distance measure in the determination of resulting clusters is pointed out. We note a fundamental distinction between the nearest neighbor cluster distance measure, Min, and the furthest neighbor measure, Max. The first favors the merging of large clusters while the later favors the merging of smaller clusters. We introduce a number of families of intercluster distance measures each of which can be parameterized along a scale characterizing their preference for merging larger or smaller clusters. We then consider the use of this distinction between distance measures as a way of controlling the hierarchical clustering process. Combining this with the ability of fuzzy systems modeling to formalize linguistic specifications, we see the emergence of a tool to add human like intelligence to the clustering process.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:30 ,  Issue: 6 )