By Topic

A fuzzy neural network based on fuzzy hierarchy error approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Wu ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech., Kowloon, China ; P. K. S. Tam

This paper presents a novel fuzzy neural network which consists of an antecedent network and a consequent network. The antecedent network matches the premises of the fuzzy rules and the consequent network implements the consequences of the rules. In the network learning and training phase, a concise and effective algorithm based on the fuzzy hierarchy error approach is proposed to update the parameters of the network. This algorithm is simple to implement and it does not require as many calculations as some other classic neural network learning algorithms. A model reference adaptive control structure incorporating the proposed fuzzy neural network is studied. Simulation results of a cart-pole balancing system demonstrate the effectiveness of the proposed method

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:8 ,  Issue: 6 )