By Topic

MLP for adaptive postprocessing block-coded images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Guoping Qiu ; Sch. of Comput. & Inf. Technol., Nottingham Univ., UK

A new technique based on the multilayer perceptron (MLP) neural network is proposed for blocking-artifact removal in block-coded images. The new method is based on the concept of learning-by-examples. The compressed image and its original uncompressed version are used to train the neural networks. In the developed scheme, inter-block slopes of the compressed image are used as input, the difference between the original uncompressed and the compressed image is used as desired output for training the networks. Blocking-artifact removal is realized by adding the neural network's outputs to the compressed image. The new technique has been applied to process JPEG compressed images. Experimental results show significant improvements in both visual quality and peak signal-to-noise ratio. It is also shown the present method is comparable to other state of the art techniques for quality enhancement in block-coded images

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:10 ,  Issue: 8 )