By Topic

Optimizing RF front ends for low power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baltus, P.G.M. ; Philips Res. Lab., Eindhoven, Netherlands ; Dekker, R.

This paper discusses optimizations for the power dissipation of RF front ends in portable wireless devices. A breakthrough in power dissipation can be achieved by simultaneously optimizing the antenna interface, circuits, and IC technology of such devices. A model that predicts the minimum power dissipation of a front end for both short-range and long-range connections will be introduced. Using these models, the impact of the antenna interface on the power dissipation will be assessed. Using two antennas with equal gain combining, a typical power dissipation reduction of 2.5 to 30 times can be achieved. Using high-impedance circuits for short-range systems in combination with silicon-on-anything technology, a further reduction of power dissipation by up to one order of magnitude can be realized.

Published in:

Proceedings of the IEEE  (Volume:88 ,  Issue: 10 )