By Topic

On the fitting of surfaces to data with covariances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
W. Chojnacki ; Dept. of Comput. Sci., Adelaide Univ., SA, Australia ; M. J. Brooks ; A. van den Hengel ; D. Gawley

We consider the problem of estimating parameters of a model described by an equation of special form. Specific models arise in the analysis of a wide class of computer vision problems, including conic fitting and estimation of the fundamental matrix. We assume that noisy data are accompanied by (known) covariance matrices characterizing the uncertainty of the measurements. A cost function is first obtained by considering a maximum-likelihood formulation and applying certain necessary approximations that render the problem tractable. A Newton-like iterative scheme is then generated for determining a minimizer of the cost function. Unlike alternative approaches such as Sampson's method or the renormalization technique, the new scheme has as its theoretical limit the minimizer of the cost function. Furthermore, the scheme is simply expressed, efficient, and unsurpassed as a general technique in our testing. An important feature of the method is that it can serve as a basis for conducting theoretical comparison of various estimation approaches.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 11 )