By Topic

Geometric structure analysis of document images: a knowledge-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kyong-Ho Lee ; Dept. of Comput. Sci., Yonsei Univ., Seoul, South Korea ; Yoon-Chul Choy ; Sung-Bae Cho

This paper presents a knowledge-based method for sophisticated geometric structure analysis of technical journal pages. The proposed knowledge base encodes geometric characteristics that are not only common in technical journals but also publication-specific in the form of rules. The method takes the hybrid of top-down and bottom-up techniques and consists of two phases: region segmentation and identification. Generally, the result of the segmentation process does not have a one-to-one matching with composite layout components. Therefore, the proposed method identifies non-text objects, such as images, drawings, and tables, as well as text objects, by splitting or grouping segmented regions into composite layout components. Experimental results with 372 images scanned from the IEEE Transactions on Pattern Analysis and Machine Intelligence show that the proposed method has performed geometric structure analysis successfully on more than 99 percent of the test images.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 11 )