By Topic

Dynamic task scheduling using online optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hamidzadeh, B. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Lau Ying Kit ; Lilja, D.J.

Algorithms for scheduling independent tasks on to the processors of a multiprocessor system must trade-off processor load balance, memory locality, and scheduling overhead. Most existing algorithms, however, do not adequately balance these conflicting factors. This paper introduces the self-adjusting dynamic scheduling (SADS) class of algorithms that use a unified cost model to explicitly account for these factors at runtime. A dedicated processor performs scheduling in phases by maintaining a tree of partial schedules and incrementally assigning tasks to the least-cost schedule. A scheduling phase terminates whenever any processor becomes idle, at which time partial schedules are distributed to the processors. An extension of the basic SADS algorithm, called DBSADS, controls the scheduling overhead by giving higher priority to partial schedules with more task-to-processor assignments. These algorithms are compared to two distributed scheduling algorithms within a database application on an Intel Paragon distributed memory multiprocessor system.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:11 ,  Issue: 11 )