By Topic

A combined input and output queued packet switched system based on PRIZMA switch on a chip technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Minkenberg, C. ; Zurich Res. Lab., IBM Corp., Ruschlikon, Switzerland ; Engbersen, T.

A packet-switched system architecture based on the combination of a single-chip output-buffered switch element and input queues that sort arriving packets on a per-output-port basis is proposed. Scheduling is performed in a distributed two-stage approach. Independent arbiters at each of the inputs resolve input contention. Whereas the output-buffered switch element resolves output contention. As a result of this distribution of functionality, complexity of the input arbiters is only linearly proportional to the number of output ports N, thus offering better scalability than purely input-buffered approaches that require complex centralized schedulers. Since the input queues are used as the main buffering mechanism, only a relatively small amount of memory (on the order of N/sup 2/ packet locations) is required in the shared-memory switch, allowing high-throughput implementations. We present simulation results to demonstrate the high performance and robustness under bursty traffic achieved with the proposed system architecture. A practical implementation in the form of the PRIZMA family of switch chips is outlined, with emphasis on its versatility in scaling in terms of both port speed and number of ports, and its support for quality-of-service mechanisms.

Published in:

Communications Magazine, IEEE  (Volume:38 ,  Issue: 12 )