By Topic

A hierarchical approach to color image segmentation using homogeneity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heng-Da Cheng ; Dept. of Comput. Sci., Utah State Univ., Logan, UT, USA ; Ying Sun

In this paper, a novel hierarchical approach to color image segmentation is studied. We extend the general idea of a histogram to the homogeneity domain. In the first phase of the segmentation, uniform regions are identified via multilevel thresholding on a homogeneity histogram. While we process the homogeneity histogram, both local and global information is taken into consideration. This is particularly helpful in taking care of small objects and local variation of color images. An efficient peak-finding algorithm is employed to identify the most significant peaks of the histogram. In the second phase, we perform histogram analysis on the color feature hue for each uniform region obtained in the first phase. We successfully remove about 99.7% singularity off the original images by redefining the hue values for the unstable points according to the local information. After the hierarchical segmentation is performed, a region merging process is employed to avoid over-segmentation. CIE(L*a*b*) color space is used to measure the color difference. Experimental results have demonstrated the effectiveness and superiority of the proposed method after an extensive set of color images was tested.

Published in:

IEEE Transactions on Image Processing  (Volume:9 ,  Issue: 12 )