By Topic

On the selection of an optimal wavelet basis for texture characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mojsilovic, A. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Popovic, M.V. ; Rackov, D.M.

Although most of the theoretical and implementation aspects of wavelet based algorithms in texture characterization are well studied and understood, many issues related to the choice of filter bank in texture processing remain unresolved. The impact of the wavelet basis has been mentioned in a few papers, whereas other more detailed investigations have considered only the choice of the wavelet basis in image coding. For example, regularity, number of vanishing moments and a shift variance degree have been used for the filter evaluation in image coding, but the utility of all these metrics in texture analysis has not yet been established. Therefore, the scope of this paper was to investigate whether the properties of decomposition filters play an important role in texture description, and which feature is dominant in the selection of an optimal filter bank. We performed classification experiments with 23 Brodatz textures. Our investigation shows that the selection of the decomposition filters has a significant influence on the result of texture characterization. Finally, the paper ranks 19 orthogonal and biorthogonal filters, and establishes the most relevant criteria for choice of decomposition filters in wavelet-based texture characterization algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 12 )