By Topic

Service-specific resource allocation in WDM networks with quality constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Jukan ; Inst. of Commun. Networks, Vienna Univ. of Technol., Austria ; H. R. van As

The need to establish wavelength-routed connections in a service-differentiated fashion is becoming increasingly important due to a variety of candidate client networks (e.g., IP, SDH, ATM) and the requirements for QoS-delivery within transport layers. The multiservice operation changes the way we deal with wavelength-routed paths, as they are now being characterized by manifold properties, such as transmission quality, restoration, network management, and policies. We propose a generic approach to service-differentiated connection accommodation in wavelength-routed networks where, for the network state representation, the supplementary network graphs are defined and referred to as service-specific wavelength-resource graphs. These graphs are used for the appropriate allocation of wavelengths on concatenated physical resources building a wavelength route, along which the necessary transmission quality is achieved and the required management and surveillance functions are provided. By considering twofold wavelength routing metrics, i.e., QoS metrics (service requirements) and resource metrics (quality constraints), these graphs can yield the solution to the QoS-routing problem, i.e., the provision of service-specific guarantees under quality constraints-a feature that is still missing from the existing architectures. The numerical analysis of dynamically reconfigurable multiservice WDM networks is presented for regular network operation as well as for optical network service restoration.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:18 ,  Issue: 10 )