By Topic

Grooming of arbitrary traffic in SONET/WDM BLSRs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng-Jun Wan ; Dept. of Comput. Sci., Illinois Inst. of Technol., Chicago, IL, USA ; Calinescu, G. ; Frieder, O.

SONET add-drop multiplexers (ADMs) are the dominant cost factor in the SONET/WDM rings. They can potentially be reduced by optical bypass via optical add-drop multiplexers (OADMs) and traffic grooming. In this paper we study the grooming of arbitrary traffic in WDM bidirectional line-switched rings (BLSRs) so as to minimize the ADM cost. Two versions of the minimum ADM cost problem are addressed. In the first version, each traffic stream has a predetermined routing. In the second version, the routing of each traffic stream is not given in advance; however, each traffic stream is fully duplex with symmetric demands, which must be routed along the same path but in opposite directions. In both versions, we further consider two variants depending on whether a traffic stream is allowed to be split at intermediate nodes. All the four combinations are NP-hard even for any fixed line-speed. General lower bounds on the minimum ADM cost are provided. Our traffic grooming follows a two-phased approach. The problem targeted at in each phase is NP-hard itself, except the second phase when the line speed is two. Various approximation algorithms are proposed in both phases, and their approximation ratios are analyzed.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 10 )