By Topic

IP layer restoration and network planning based on virtual protection cycles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stamatelakis, D. ; TRLabs, Edmonton, Alta., Canada ; Grover, W.D.

We describe a novel restoration strategy called virtual protection cycles (p-cycles, patents pending) for extremely fast restoration in IP networks. Originally conceived for use in WDM and Sonet transport networks, we outline the adaption of the p-cycle concept to an IP environment. In an IP router-based network, p-cycles are implemented with virtual circuits techniques (such as an MPLS label switched path, or other means) to form closed logical loops that protect a number of IP links, or a node. In the event of failure, packets which would normally have been lost are encapsulated with a p-cycle IP address and reenter the routing table, which diverts them onto a protection cycle. They travel by normal forwarding or label switching along the p-cycle until they reach a node where the continuing route cost to the original destination is lower than that at the p-cycle entry node. Diverted packets are deencapsulated (dropped from the p-cycle) at that node and follow a normal (existing) route from there to their destination. Conventional routing protocols such as OSPF remain in place and operate as they do today, to develop a longer term global update to routing tables. Diversionary flows on the p-cycle inherently cease when the global routing update takes effect in response to the failed link or node. The p-cycle thus provides an immediate real-time detour, preventing packet loss, until conventional global routing reconvergence occurs. The aim of the paper is to explain the basic p-cycle concept and its adaptation to both link and node restoration in the IP transport layer, and to outline certain initial results on the problem of optimized design of p-cycle based IP networks.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 10 )