By Topic

A gradient search interpretation of the super-exponential algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Mboup ; Univ. Rene Descartes, Paris, France ; P. A. Regalia

This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l2p and l2 sequence norms, where p>1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal

Published in:

IEEE Transactions on Information Theory  (Volume:46 ,  Issue: 7 )