By Topic

The Kalman filter as the optimal linear minimum mean-squared error multiuser CDMA detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Teng Joon Lim ; Centre for Wireless Commun., Singapore ; Yao Ma

It is shown that a first-order linear state-space model applies to the asynchronous code-division multiple-access (CDMA) channel, and thus the Kalman filter produces symbol estimates with the minimum mean-squared error (MMSE) among all linear filters, in long- or short-code systems for a given detection delay. This result may be used as a benchmark against which to compare the performance of other linear detectors in asynchronous channels. It also reveals that a time-varying recursive filter with a fixed and finite complexity implements the fixed-lag linear MMSE (LMMSE) detector, which hitherto has been assumed to require a processing window (and hence complexity) that grows with time

Published in:

IEEE Transactions on Information Theory  (Volume:46 ,  Issue: 7 )