Cart (Loading....) | Create Account
Close category search window
 

Strong converse and Stein's lemma in quantum hypothesis testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ogawa, T. ; Dept. of Math. Eng. & Inf. Phys., Tokyo Univ., Japan ; Nagaoka, H.

The hypothesis testing problem for two quantum states is treated. We show a new inequality between the errors of the first kind and the second kind, which complements the result of Hiai and Petz (1991) to establish the quantum version of Stein's lemma. The inequality is also used to show a bound on the probability of errors of the first kind when the power exponent for the probability of errors of the second kind exceeds the quantum relative entropy, which yields the strong converse in quantum hypothesis testing. Finally, we discuss the relation between the bound and the power exponent derived by Han and Kobayashi (1989) in classical hypothesis testing

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 7 )

Date of Publication:

Nov 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.